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Two-stage estimator

Necessity of unlabeled data

Pareto manifold of K convex objectives (- I]j)k)
(1,9, € AKX x R™ -

Rm

Goal: Estimate {9, : 4 € A1} from i.i.d. data (X}, Y¥) ~ P*
High dimensions: Sample sizes = n, < m = parameter dimension

—> need regularization (e.g., ¢ |-penalty)! But how?

Failure of direct regularization

Separate learning and optimization using re-parametrization:

Assume 30, = Qk(l]j’k) . L9, Pky = Z(8,6,)

N\

Stage 1: estimate 0, ..., O

Stage 2: optimize 19ts = arg min Z 4L (D, 0 )

9ER?
N =1

Theoretical guarantees

Many existing methods (e.g., [1,2]) regularize directly

19d' = arg min Z LZL (8, PR + p,(9).
9eR"

Example: Let X, € R4,y =X, B, + &, € ~ #/(0,6°]), K =2,
ZLI,PY = IXp(3 - I3 and L3, PY) = [IX;8 — yill5.

Then direct regularization with any penalty is lower bounded as
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Insight 1:
Treating multi-objective learning as a single
learning problem fails in high dimensions!
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sup  E[ 99 — 191||2>7 < V1.1 >0,7>1,p,: sup  E[| 9T - 9,12 57

—&— two-stage estimator ensemble
--=+- directly regularized hypernetwork
-+ two-stage hypernetwork

Theorem: Under (strong) convexity in & = £ (38, 6,) and locally
Lipschitz parameterization 0, = V (&1(8, 6,),

K
195 = 9,1, D Al = 64l
k=1

Vie Ak

Theorem: Denote 6, = inf; supp [E|| 0 — 0,||. Under convexity and
,Lipschitz identifiability*, the minimax estimation error is at least

1nfsup [E||19/1—19/1”22 max (ﬂkék 2/1 ) .
ke[K]

19,1 +

=In many cases our procedure achieves minimax rate max;c x4,/

Example continued:
. > : 1
Stage 1: estimate f; = arg mingepa—|| X f — vill5 + oIl

Stage 2: optimize 1953 = arg Ming pa Zle LIX (8 = BII5

c’logd

Random design? Use /N unlabeled data to estimate covariance!

Example continued: If /5, are known, but covariances 2, unknown:
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unlabeled data ~

log-excess scalarized loss log €
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Insight 3:
Separating optimization and learning
requires enough unlabeled data!

Application: fairness-risk trade-off

y T X[X, <71 2
|ZAINg!

—¢— Pareto front
directly regularized ensemble

Insight 2:
By separating optimization and learning we
can mitigate the curse of dimensionality!

square loss on first distribution

subgroups

N gfair(‘ga §) = </’l9‘9>2

=X.p+< p
[X|A] ~ N (Ap, 1)

ENEM

le—=1  Communities le—2 1.0 - le=2 Pareto front

27 of test data
directly regularized

1.0 A
ensemble
14 0.5 1 two-stage estimator
0.5 A ensemble
0 . : : 0.0 1 0.0

00 0l 02 03 04 (9 0.21 0.22 0.23 0.30 0.35 0.40 0.45
square loss on test data error rate on test data error rate on test data

ity on test data

demographic par

1. Sukenik, P., & Lampert, C. (2024). Generalization in multi-objective machine learning.
Neural Computing and Applications, 1-15.

2. C. Cortes, M. Mohri, J. Gonzalvo, and D. Storcheus. Agnostic learning with multiple
objectives. In Advances in Neural Information Processing Systems, volume 33, 2020.



